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Abstract

The absence of a trusted computing base for mobile agents poses serious security issues for

both the host system and the survivability of the agent. Once a mobile agent is dispatched,

asserting anything about the host system, the agent's behavior, or even the agent's exis-

tence is di�cult to ascertain. In order to employ agents with any degree of con�dence,

constraints need to be placed on the agent computation since no restraints can be imposed

(or assumed) about the host system's hardware or software. This paper presents a fault-

tolerant approach for increasing an agent owner's con�dence in the integrity of its agent.

Keywords: Software Fault Tolerance, Mobile Agents, Agent Trustworthiness, and Vot-

ing.

1 INTRODUCTION

In traditional client-server settings, a central and trusted host communicates with stati-

cally bound client processes through either asynchronous messages or synchronous remote

procedure calls. Mobile agents extend this communication paradigm by providing a more

exible approach for building distributed applications in an Internet-scale setting. A

mobile agent is a program that is dispatched from a source computer and autonomously

migrates to multiple hosts to perform the tasks (typically resource intensive computations)

for which it was programmed.

The explosive growth of the Internet as a medium for communication, business, and

electronic commerce has fostered the growing interest in agent-based systems. An agent's



migratory behavior provides the ability to utilize an unbounded set of sources for infor-

mation and computing resources. The salient characteristic of agent-based systems is the

conservation of network bandwidth; once the agent migrates to a host system, all subse-

quent computation is performed there. This approach is more e�cient than moving the

data to the computation and the overhead incurred by invoking remote operations.

Mobile agent computations can roughly be categorized into two domains: independent

and dependent. The independent domain consists of mobile agents that are tasked with

gathering data, usually from large databases. Computations are classi�ed as independent

when the result obtained from a host system does not depend on information retrieved

from other hosts. This domain is typically associated with computations where the host

systems are competitors, such as querying various airlines for ight information. The

dependent domain includes computations where prior results obtained from host system(s)

is required for subsequent computations at other host systems. Other research e�orts

include a third category commonly referred to as push technology, where agents provide

host systems with information. An example is an agent that provides software upgrades

to systems on the Internet. We will disregard the third category in this paper, because the

permissions granted to the agents to accomplish such tasks pose an intolerable security

threat to the host systems. Though there are other types of agent-based computations,

the �rst two categories represent the typical strategies for employing agents.

The exibility of agent-based computing is not without penalty since the value-added

by employing agents is defeated if: (1) malicious or errant hosts attack agents, (2) mali-

cious or errant agents attack hosts, or (3) erratic Internet behaviors or resource scarcity

pose intolerable time delays.1 Others have addressed mechanisms for protecting host sys-

tems from the vulnerabilities of non-local code [6, 17, 19, 22]. Although protecting systems

from mobile code is not a solved problem, sandboxing techniques and access control have

been mostly successful for constraining non-local code. Of the three problems, the third

problem is deemed as the hardest security problem with low solubility [7]. This problem is

considered most di�cult primarily because it is impossible to prevent malicious or faulty

sites from tampering with cleartext agents [2], nor is it possible for a cleartext agent to

maintain code or data privacy.

Recent research in mobile computing security contradicts the previous statement by

presenting a protocol that allows certain mobile code programs (ones that compute poly-

nomial or rational functions) to execute in encrypted form except for the cleartext in-

structions [15]. Therefore, execution on a host system does not compromise an agent's

privacy and it safeguards against agent tampering (because host systems cannot decrypt

the agents). Although this approach is critical for protecting mobile agents (tasked with

computations in this particular set of functions), we assume cleartext agents in order to

encompass all agent computations.

Our focus is on the �rst problem: malicious or faulty hosts. This paper presents a

method for decreasing the vulnerability of cleartext agents to malicious or faulty host

systems. In addition to the malicious host system threats, agents systems are burdened

with the problem that the behavior of an agent on each host system is unknown. That

is, an agent will execute in many environments that may have not been anticipated or

1The concern over protecting agents during migration is minimal as protection can be achieved using

well-known cryptographic protocols to transfer an agent securely.



tested before dispatching the agent. After all, the host system may simply su�er from

faulty software or hardware, and we cannot anticipate what problems an agent may su�er

from due to these non-malicious problems. In spite of these problems, the e�ciency and

exibility of mobile agents has lured many to use this paradigm. But before the agent

paradigm is applied to critical applications, assurance regarding the inherent security

issues of mobile agents is needed.

This paper proposes a fault-tolerant approach that: (1) makes mobile agents more

resilient to the possibility that host systems may attempt to tamper with agents, and

(2) masks the e�ects of agent incompatibilities with host systems. Our approach assumes

that we have complete control of the agent before it leaves our site, but after that, we have

no control of the agent. We have designed an approach by which an agent can move from

host to host and perform the tasks that any other agent can perform, while increasing

our con�dence in the integrity of the results from our agent. We expect that an agent

will at some point accidentally visit a malicious or faulty host. Our approach presumes

this likelihood and provides defensive steps that can attempt to overcome any damage.

2 AGENT INSECURITIES

As a simple example of the types of concerns we are worried about, suppose an agent is

dispatched from an agent owner, O, to multiple host systems. After the agent leaves, how

does O know its agent is alive \in the desired way"? Certainly, if O receives a simple \i am

alive" message from the agent, then the alive portion of the question can be addressed.

But assuring O that the agent is alive in the desired manner is not easily answered. To

answer this, we need to know whether the agent is performing the computation x that it

is supposed to (as opposed to performing some other computation y that it should not

be). If the agent is performing computation y, that suggests that the host system may

have maliciously tampered with the agent's behavior. However, performing computation

y also suggests another possibility: a host has inadvertently tampered with the agent due

to some unexpected incompatibility, such as a glitch in the host's software or hardware

system. Either situation will likely force the agent to exhibit unintended behaviors, thus

increasing the possibility that the agent will return incorrect results to the owner. From

the standpoint of O, both situations are undesirable and equally di�cult to detect.

If an agent were to return incorrect information, we must �rst be able to detect that

the information is incorrect. Secondly, it would be bene�cial to be able to determine

which situation caused the problem: a faulty host or malicious host. Since determining

this will often be too costly or impossible, the best that we can do is to build enough

robustness into how agents return information to the agent owner such that the possibility

of detecting either occurrence is increased.

One idea that appears to partially address the faulty or malicious host problem has

already been proposed. Vigna has proposed cryptographic traces of the computations

performed by agents [18]. These traces shadow the execution of an agent in a manner

that cannot be forged by the host. Although, this information provides insight into an

agent's status, manual veri�cation of the \huge" (\even if compressed" [18]) statement

traces is an expensive process, which is likely to be ine�cient and error-prone. This

conjecture is reinforced by others [1]: \The trouble with traces is that they give us far
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Figure 1: A simple agent computation.

more information than we need. In fact, the typical trace program provides so much

information that con�rming the path from its massive output dump is more work than

simulating the computer by hand to con�rm the path."

An alternative solution to increase the likelihood that agents are executing in the

desired way is to build fault-tolerant schemes into agent-based systems. We are not the

�rst to propose using the principles of fault-tolerant computing with mobile agents and

will summarize some of the ideas put forth by others. But before doing so, we will �rst

give an example of what it means to build fault tolerance into an agent-based system.

Figure 1 depicts a simple agent computation, where an agent is dispatched from the

agent owner O, migrates to n networked host computers and returns back to O. For

simplicity, we will assume that the source and �nal destination of the agent are the

same. If a mobile agent is corrupted while traveling from host to host, the corruption

will almost certainly propagate to each successor site including the �nal destination site.

Thus this issue can be modeled as a \propagation problem," and there is a wealth of

existing solutions from other domains that allow us to study how corrupted information

propagates (e.g., static fault tree analysis, failure mode e�ect and criticality analysis [11],

slicing [20], data ow analysis [14], etc.). We will leverage the basic principles of halting

the propagation of corrupt information in agent-based systems by proposing a \design-

for-fault-tolerance" approach to thwart the e�ects of agent corruption.

The IEEE de�nes fault tolerance as [8]:

\(1) the ability of a system or component to continue normal operation despite

the presence of hardware or software fault. (2) the number of faults a system or

component can withstand before normal operation is impaired. (3) pertaining

to the study of errors, faults, and failures, and methods for enabling systems

to continue normal operation in the presence of fault."

Traditionally, fault tolerance has been achieved by building subsystems from redun-

dant components that are placed in parallel to ensure higher quality [13]. Due to the

improvement in hardware fault tolerance, the use of redundant components was extended

into the software domain. For example, in an n-version system, two or more independently

created yet functionally equivalent programs are developed from the same speci�cation.

A voter collects the outputs generated from executing the n versions in parallel, and se-

lects the output of the fault-tolerant system according to a pre-speci�ed algorithm. The

general intuition is that the output value that is most frequently observed must be the

correct result; this is of course not always true [10].



Schneider [16] presents a fault-tolerant approach to mask the e�ects of faulty processors

by replicating the agent at each visited site. More speci�cally, the agent visits multiple

host systems at a site and each host system sends the agent's output to every host system

in the subsequent site where voting will occur to mask the e�ects of faulty processors. This

approach also uses digital signature traces to allow the voter to verify the authenticity of

its electorate.

Although this approach is fairly successful in coupling fault tolerance and agents, there

are a couple drawbacks. If any processor involved in the fault-tolerant agent computation

is down or refuses to allow the agent to execute, this fault-tolerant agent computation can

easily degrade to the agent computation illustrated in Figure 1 unbeknownst to the agent

owner. To prevent this from occurring, voters could be forced to delay voting until each

member of the electorate submitted its results. In this situation, however, a processor

that is either down or refuses the agent would cause the entire agent computation to never

terminate. Either situation is equally undesirable since the goal is to build fault tolerance

into agents. A second drawback is that whenever this fault-tolerant scheme successfully

masks a faulty processor, the agent owner has no record of which host was malicious or

faulty. This information is quite useful for subsequent agent computations.

Another fault-tolerant approach has been proposed which dispatches two identical

agents to a known set of host systems, where one traverses the systems in one direction and

the other agent does the reverse [21]. So for example if you order the hosts, h1; h2; : : : ; hn,

then one agent would traverse forward from h1 to hn, and the other agent would start at

hn and work backward. The author of this approach acknowledged that this approach is

only successful in detecting at most one malicious system. Furthermore, this approach

cannot determine which host in fh1; h2; : : : ; hng is malicious to eliminate that host site

for subsequent agent computations.

Some might also suggest a similar approach where multiple identical agents are released

and try all sorts of host traversal combinations in order to increase the probability that

at least one non-tampered agent will survive. We can conceive situations where this

\shotgun" approach would work, but we also can see it ooding the Internet to the point

of gridlock.

Our solution is based on the principles of fault tolerance but without any independence

assumptions. Our protocol requires a limited degree of interaction between the agent

owner (or another designated, trusted machine that will remain on-line) and its agent.2 An

interactive protocol between an owner and its mobile agents requires active participation

from both an agent owner and an agent, precluding the possibility of the owner going

o�-line. This is the trade-o� that we incur in order to increase the fault tolerance of agent-

based systems. The interaction involved, however, must not be equated with agent task-

delegation. Further, the communication overhead does not even come close to negating

the advantage of employing agents to conserve network bandwidth to perform a typically

resource intensive task with local resources/data on a host system. Rather, this interaction

is merely to allow the voting portion of our fault-tolerant scheme to execute on a trusted

system, which for more critical agent applications is necessary.

Similar to the fears of using Commercial-O�-The-Shelf (COTS) components, knowing

2For the remainder of the paper, we will assume that agent owner communicates with its agent even

though it is just as feasible to designate another \trusted" machine.



a priori how an agent will congeal with a given host would require omnipotence. With

agents, the state of the host systems that they will traverse is a black box to the agent

owner. It is not possible to ever know exactly how an agent (the software) will behave

on a host system without full access to the hardware and software of the host system.

Therefore, applying defensive fault-tolerant strategies to agents with a limited degree of

interaction with agent owners is all that we have to work with, since we cannot alter the

behavior of the hosts (unless we wish to develop malicious agents, which of course we do

not).

3 TOWARDS AGENT FAULT TOLERANCE

In our approach, we assume that all agent owners and host system owners (these are likely

to be the principals responsible for launching the agent server process on the host system)

own a public and secret key. Further, we assume that migrating agents are encrypted using

a public key system similar to PGP [4]. As in PGP, a random session key is generated

for each agent. Using the private key algorithm, IDEA, the agent is encrypted with the

random session key. Then, the RSA algorithm is used to encrypt the random session key

with the recipient's public key. Both the encrypted agent and the encrypted session key

are dispatched from each migration point of the agent.

In order to transmit data from a host system back to an agent owner, the data is

encrypted using the random session key that the agent carries. Next, the random session

key is encrypted (by the host system) with the host system's secret key. The agent owner

can then decrypt the encrypted random session key with the host system's public key,

and then use the random session key to decrypt the data received. Thus, combining PGP

with agents allows us to: (1) securely transport agents, and (2) return computational

results from each host system. This approach assumes that the keys for each host system

and the agent owner have not been compromised.

By adding fault tolerance to agent systems, the problems created by malicious systems

can be decreased and assurance that the agent is compatible with a host system can be

increased. This is quite di�erent from the simple \�re-and-forget" methodology.

Similar to the aforementioned IEEE de�nition for fault tolerance, software fault tol-

erance refers to the ability of the software to produce \acceptable" outputs (as de�ned

in the system-wide requirements) regardless of the program states that are encountered

during execution. In the context of agents, our goal is to mask agent/host incompatibili-

ties and mask errors resulting from defective or malicious hosts. To satisfy this goal, we

will employ the ideas of redundancy and voting.

We will now discuss our scheme for applying redundancy and voting to improve the

validity of the results from agents. Our approach deliberately dispatches an agent to

visit multiple host systems within a single domain whenever enough information exists

to do so.3 Doing this improves the chance that the results returned from the agent will

be correct. Naturally, we cannot force di�erent domains to have multiple host systems.

But if these domains have redundant host systems, then the agent will visit multiple host

3It is not always the case that a single domain will have redundant host systems, however in this

paper, we will take advantage of that situation whenever possible.
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Figure 2: Fault-Tolerant Agent Architecture.

systems. As you will see, this (combined with voting) boosts the fault tolerance of mobile

agents.

Figure 2 illustrates our redundant agent architecture. Each column in the �gure

corresponds to a domain containing multiple host systems that are visited by the agent.

Here, O is the agent owner, and Domain 1, Domain 2, Domain 3, and Domain 4 are

the respective domains that are traversed by the agent. In this �gure, our agent will

traverse four di�erent domains, for a total of 14 host machines. The solid lines in the

�gure designate the path of the agent, and the bidirectional dashed lines represent the

transmission of the encrypted results computed from executing the agent on one of host

platforms and an agent owner response.

We will now walk through this example of a fault-tolerant agent system. It is the

role of the agent owner to dispatch the encrypted agent and random session key (as we

previously described) to the three host systems in Domain 1, namely 1, 2 and 3. Each

of these host systems decrypt the random session key using its own (the host system's)

secret key. With the random session key, each host system can now decrypt and execute

the agent. Upon completion, each host system sends the encrypted results (not the agent)

and random session key back to the agent owner. For now, let's assume every host system

returns these results punctually.

After the results are obtained from each of the host systems within a domain, the

agent owner votes on the outputs received and selects an output for this domain based on

a pre-speci�ed voting algorithm. Then, the agent owner generates a new random session

key and sends the key to the host system that had the \correct" output. If more than

one host system provides the \correct" output to the agent owner, then one of these host

systems can be selected at random. In Domain 1, host system 1 had the \correct" output

and therefore received a new random session key. In Figure 2, note that the \selected"



hosts correspond to the shaded host circles. Next, the selected host system dispatches

the agent with the new random session key to each of the host systems in the succeeding

domain.

In Figure 2, the unshaded host systems in each domain are noti�ed by the agent owner

to terminate the agent. It is possible that the agent does not get terminated, and in fact

it might get dispatched to additional other host systems. However, if any host system

attempts to return information back to the agent owner, the owner will detect that the

wrong random session key (an out-dated key) is in-use and will discard any results that

are not encrypted with the correct random session key.

Because voting takes place on a trusted system, assurance in the output for each

domain is increased.4 By passing intermediate results back to the agent owner, the owner

now has insight into which host systems could be faulty or malicious and can dispatch

future agent computations accordingly.

This idea of voting on a trusted base has been championed by others. Farmer et al. [3]

stated that as one achievable security requirement of mobile agents, any critical decisions

should be made on a trusted system. Since correct execution of instructions cannot be

guaranteed [5], voting on an a untrusted host system is not prudent. Further, voting is

typically a simple computation. Thus, we contend that the voting algorithm is likely to

be the easiest and most appealing portion of the agent to tamper with.

Di�erent voting algorithms exist [9]. Typically, voting algorithms pick the output

value that is most commonly observed. This is referred to as \majority voting." If there

is not a majority agreement, one output may be selected at random, maximum agreement

may be chosen, or a median result may be computed based on the outputs received [12].

Using a majority voting scheme, unless a majority of the host systems within a domain

collude to blatantly lie or tamper with the visiting agent in exactly the same way, this

approach can mask the e�ects of up to dn=2e�1 faulty host systems where n is the number

of host systems in a domain. For agents, the voting algorithm employed may depend, in

part, on the type of information that the agent has collected, the agent's computation,

and the number of host systems within a domain.5

As an example of how voting depends on the agent's task and current situation,

suppose an agent can only visit two host systems within a domain. Further suppose

the agent is tasked with �nding the cost of a ight from point A to point B, and the

result of the second system is di�erent than the �rst. Since there is a discrepancy in this

type of agent task, the cheaper price may be favored. Such discrepancies can occur since

database query results may change frequently. However, if the agent's task was purely

computational with identical inputs on both host systems and a discrepancy resulted,

selecting an output may not be as trivial. In this situation, this may indicate that the

agent should repeat the computation to settle on one result, or that the agent should

migrate to host systems with equivalent resource availability in another domain to repeat

the computation. How to handle these and other similar discrepancies may di�er for

4We can ignore the issue of the \correctness" of the voting code on the owner, because it is no less

likely this voting will be correct than if the agent carried the voting code (as does the fault-tolerant

scheme in [16]).
5Note that when a domain only has a single host or a domain does not allow us to visit more than

one host, voting using a single result in not necessary.



each agent. Determining how to handle these situations aids in selecting which voting

algorithm is best suited for the agent computation.

As we alluded to in the previous example, this voting scheme can be used for shopping

agents. Certainly, dispatching multiple agents to make the same purchase is not the

intent. Rather, voting can be employed to notify which agent should make the purchase.

It is possible that each agent will get a di�erent price from a host system even if the hosts

operate properly. This is because the agents may execute at slightly di�erent times/rates,

thus getting di�erent inputs and results as the world changes.

In summary, we have achieved a higher degree of agent fault tolerance by programming

the agent to visit multiple host systems within the same domain. The rationale for doing

so follows: di�erent �les, environment variables, permissions, and software and hardware

con�gurations can cause each host system to be unique even when they are in the same

domain. Software is a dynamic, behavioral entity, whose behavior is partially determined

by the software's inputs as well as the immediate state of the execution environment.

Since the very nature of agents is to traverse multiple systems (which means traversing

multiple environments), the exact behavior of an agent in each di�erent environment

cannot be known until the exact time at which the agent is in each environment.

By tracking intermediate results, an owner can better determine the legitimacy of its

agents for both dependent and independent computations. This also allows agent owners

a means to better determine (and meet) real time constraints for agent computations.

That is, if an agent is tied up due to resource de�cient host systems or if an agent was

terminated at some point, an agent owner can learn (or deduce) this by receiving (or lack

of) these intermediate results and dispatch other agents accordingly. Otherwise, the agent

owner has little, if any, information about the status of its agents.

4 SUMMARY

Admittedly, there are a couple drawbacks to our approach. First, the agent owner or

another trusted system must remain connected to the network while the agent is still active

since communication is continual during the agent's migration. Thus, this approach would

not be useful for those who need to remain o�-line and have no access to other machines

that will remain on-line. Second, the communication overhead to send information back

to the agent owner will delay the agent's computation. This will increase the duration

of the agent's overall computation, especially when the voter is waiting to receive results

from other systems.

As we previously mentioned, however, the voter (agent owner) need not wait for all of

the results. For instance, with a majority voting scheme, a voter need only wait until it has

received a majority of identical results. Thus, voters can tolerate slowdowns in returning

results or even situations where agents have been terminated by a host system. In spite of

these drawbacks, we remain �rm in our belief that when integrity is imperative, it is better

to incur the additional costs of returning information to the agent owner and letting it

perform the voting than risking voter corruption by host systems. Furthermore, arming

an agent owner with intermediate results is critical in determining the trustworthiness of

an agent's �nal results.

This paper has addressed the problem of agents visiting anomalous host systems.



Employing this methodology for agent-based systems provides increased assurance that

agents have not been accidentally or maliciously tampered with. This methodology utilizes

a combination of the principles of fault-tolerant computing (redundancy and voting) and

cryptography.

We have recommended that the following guidelines be adopted to increase agent

assurance:

1. Generate a new random session key before dispatching an agent from everymigration

point,

2. Visit multiple host systems in a domain whenever possible,

3. Return the encrypted intermediate results from each host system to the owner, and

4. Employ voting at the owner.

Note that our scheme does not limit the user from the many bene�ts of agent technology.

Instead, we have changed the manner by which the agents are dispatched, distributed, and

compute results to reduce the concern about malicious or faulty hosts and thus increase

the con�dence an agent owner can place in its agents results.
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